当前位置: 网校> 考研培训> 考研数学基础班网课
新东方在线 考研培训

考研数学基础班网课

发布时间:2021年06月21日
新东方考研免费试听课程
  • 考研英语小作文备考技巧
  • 考研英语真题高频核心词总结
  • 考研高等数学-函数极限的性质
  • 毛中特必学考点解析
  • 考研管综数学课程
  • 考研管综逻辑课程
新东方考研选课中心
新东方考研套餐推荐
全程班
适用缺乏规划、效率低下、高性价比
资深大咖+温暖领学陪练+一站式解决备考疑难。 详情>
1190-2980
直通车
适用基础薄弱、自制力弱、需要监督
大咖全程陪学带练+班主任1V1导学督学 +专属答疑老师1V1服务+批改服务 详情>
4090-7690
无忧计划
适用择校迷茫、缺乏规划、基础薄弱
小班+主讲老师1v1规划答疑+ 定制择校报告+专属作文模板 详情>
12800-19800
新东方考研师资介绍
王江涛 风格鲜明、趣味十足

新东方考研英语首席主讲,写作辅导实力教师,新东方20周年功勋教师,英语学习畅销书作者。北京外国语大学英语语言文学学士,北京大学硕士,曾任中国政府代表团高级翻译出访欧美。多年考研英语教学经验。代表作:《考研英语高分写作》、《考研英语高分写作字帖》、《十天搞定考研词汇》等。

董仲蠡 清新脱俗、逻辑清晰

新东方在线实力教师,新东方20周年功勋教师。主讲四六级翻译。新东方教育科技集团教学培训师,新东方教育集团优秀教师。毕业于吉林大学,07年加入沈阳新东方学校。主授国内考试课程,横跨综合、词汇和阅读各类课程。英文底蕴深厚,课程充实紧凑,对考试分析透彻,考点把握精确。

杨超 思路清晰、轻松幽默

美国加州州立大学博士后,斯坦福大学访问学者。从事考研数学辅导十多年,把教学当乐趣,潜心研究考题,原创了很多快捷解法和秒杀公式,同时又提出在基础阶段练好三大计算(求极限导数积分)。

郝明 逻辑清晰、耐心专业

新东方考研政治学科负责人、主讲老师,集团优秀教师,马克思主义中国化硕士,十年考研政治一线教学经验,考研政治全能型教师,擅于从命题人的角度剖析知识考点,梳理重点难点。使学员轻松愉快的掌握破题套路,玩转考研政治。授课逻辑清晰、语言风趣幽默,深受学员欢迎的"好老师"。

张鑫 风格鲜明、幽默风趣

北京工业大学工科硕士,新东方在线管综数学教师,教学经验丰富,秉承"审题+结论=玩转教学!" 的教学理念,倡导"做题、变题、讲题"三步学习法,通过独特的思维训练让学员轻松提分。

网络课程 我们是认真的
其他机构
  • 经验少、不资深
  • 课时太多看不完或太少知识点不全
  • 无特别服务
  • 无教材或教材不全
新东方在线考研
  • 新东方明星师资阵容,全速助攻
  • 直录博课程结合,自主选择学校时间
  • 作文批改,知识堂答疑,考前诊断等等
  • 全套精编密训资料,电子讲义
选择新东方在线的8个理由
  • 专业名师

    精选名师授课
    授课经验丰富
  • 教研团队

    数百人教研团队
    精细模块化分工
  • 授课方法

    直播、录播结合
    学习效果事半功倍
  • 培训经验

    十数年辅导经验
    提高复习效果
  • 高清视频

    涵盖考试重点难点
    支持打包下载
  • 上市机构

    纽交所上市公司
    全国数千家代理
  • 正规公司

    公司备案资质完整
    安全可靠有保障
  • 百强品牌

    连获多项大奖
    受到广泛认可

学习资料

考研数学一般题型解题思路分享

函数是表皮,函数的性质也体现在积分微分中。例如他的奇偶性质他的周期性。还有复合函数的性质:
1、奇偶性,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);
2、周期性也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;
3、复合函数之间是自变量与应变量互换的关系;
4、还有个单调性。(再求0点的时候可能用到这个性质!(可以导的函数的单调性和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。

下面总结一下,求极限的一般题型:
1、求分段函数的极限,当函数含有绝对值符号时,就很有可能是有分情况讨论的了!当X趋近无穷时候存在e的x次方的时候,就要分情况讨论应为E的x次方的函数正负无穷的结果是不一样的!
2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉!

解决办法:
1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是!有2个问题要注意!问题1:积分函数能否求导?题目没说积分可以导的话,直接求导的话是错误的!!!!问题2:被积分函数中既含有t又含有x的情况下如何解决?
解决1的方法:就是方法2微分中值定理!微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决2的方法:当x与t的函数是相互乘的关系的话,把x看做常数提出来,再求导数!!当x与t是除的关系或者是加减的关系,就要换元了!(换元的时候积分上下限也要变化!)