当前位置: 网校> 高中教育培训> 高考数学知识点总结加例题
简单网校 高中教育培训

高考数学知识点总结加例题

来源:高中教育网校 发布时间:2016-03-31

 

    一、函数
 
    1.函数的基本概念
 
    函数的概念,函数的单调性,函数的奇偶性,这些属于函数的基本概念,已经在高一数学必修一中有了详细的介绍,在此不再赘述。
 
    2.指数函数
 
    单调性是指数函数的重要性质,特别是函数图象的无限伸展性,x轴是函数图象的渐近线,当0 ∞,y->0;当a>1时,x->-∞,y->0;当a>1时,a的值越大,第一象限内图象越靠近y轴,递增的速度越快;
 
    3.对数函数
 
    对数函数的性质是每年高考的必考内容之一,其中单调性和对数函数的定义域是热点问题,其单调性取决于底数与“1”的大小关系.
 
    二、三角函数
 
    1.命题趋势
 
    2014年高考可能仍会将三角函数概念、同角三角函数的关系式和诱导公式作为基础内容,融于三角求值、化简及解三角形的考查中.由该部分知识的基础性决定这一部分知识可以和其他知识融合考查,高考中需要关注.
 
    2.三角函数式的化简要遵循“三看”原则
 
    (1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.
 
    (2)二看”函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有”切化弦”
 
    (3)三看”结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.多做三角函数练习题会对更加熟悉的掌握三角函数有帮助,这里给大家推荐李老师教的三角函数解题法。
 
    三、导数
 
    1.导数的概念
 
    1)如果当Δx-->0时,Δy/Δx-->常数A,就说函数y=f(x)在点x0处可导,并把A叫做f(x)在点x0处的导数(瞬时变化率).记作f’(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.瞬时速度就是位移函数s对时间t的导数.
 
    2)如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
 
    3)如果函数f(x)在点x0处可导,那么函数y=f(x)在点x0处连续.
 
    2.函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
 
    3.求导
 
    在高中数学导数求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式,对于不具备求导法则结构形式的要适当恒等变形,对于比较复杂的函数,如果直接套用求导法则,会使求导过程繁琐冗长,且易出错,此时,可将解析式进行合理变形,转化为教易求导的结构形


相关链接:

高中数学培训  
高中补课 
高一辅导课程 
高二辅导课程 

1 2
老师好 课程全 精准学
课本全科课程 历年真题库 学霸学习秘籍 严选专业教师

优质视频课限时免费

随时听反复听

高中复习资料知识点大礼包

全科考试重点试题预测

期中期末知识考点揭秘

语数英物化考试解题技巧串讲

免费课程