新东方考研免费试听课程
-
考研英语小作文备考技巧
-
考研英语真题高频核心词总结
-
考研高等数学-函数极限的性质
-
毛中特必学考点解析
-
考研管综数学课程
-
考研管综逻辑课程
新东方考研选课中心
-
考研英语
录播+直播
-
考研政治
录播+直播
-
考研数学
录播+直播
-
管理类联考
录播+直播
-
法律硕士
录播+直播
-
翻译硕士
录播+直播
-
教育硕士
录播+直播
-
艺术硕士
录播+直播
-
金融硕士
录播+直播
-
西医专硕
录播+直播
-
心理学
录播+直播
-
更多专业课程
录播+直播
新东方考研套餐推荐
全程班
资深大咖+温暖领学陪练+一站式解决备考疑难。
详情>
直通车
大咖全程陪学带练+班主任1V1导学督学 +专属答疑老师1V1服务+批改服务
详情>
无忧计划
小班+主讲老师1v1规划答疑+ 定制择校报告+专属作文模板
详情>
新东方考研师资介绍
王江涛 风格鲜明、趣味十足
新东方考研英语首席主讲,写作辅导实力教师,新东方20周年功勋教师,英语学习畅销书作者。北京外国语大学英语语言文学学士,北京大学硕士,曾任中国政府代表团高级翻译出访欧美。多年考研英语教学经验。代表作:《考研英语高分写作》、《考研英语高分写作字帖》、《十天搞定考研词汇》等。
董仲蠡 清新脱俗、逻辑清晰
新东方在线实力教师,新东方20周年功勋教师。主讲四六级翻译。新东方教育科技集团教学培训师,新东方教育集团优秀教师。毕业于吉林大学,07年加入沈阳新东方学校。主授国内考试课程,横跨综合、词汇和阅读各类课程。英文底蕴深厚,课程充实紧凑,对考试分析透彻,考点把握精确。
杨超 思路清晰、轻松幽默
美国加州州立大学博士后,斯坦福大学访问学者。从事考研数学辅导十多年,把教学当乐趣,潜心研究考题,原创了很多快捷解法和秒杀公式,同时又提出在基础阶段练好三大计算(求极限导数积分)。
郝明 逻辑清晰、耐心专业
新东方考研政治学科负责人、主讲老师,集团优秀教师,马克思主义中国化硕士,十年考研政治一线教学经验,考研政治全能型教师,擅于从命题人的角度剖析知识考点,梳理重点难点。使学员轻松愉快的掌握破题套路,玩转考研政治。授课逻辑清晰、语言风趣幽默,深受学员欢迎的"好老师"。
张鑫 风格鲜明、幽默风趣
北京工业大学工科硕士,新东方在线管综数学教师,教学经验丰富,秉承"审题+结论=玩转教学!" 的教学理念,倡导"做题、变题、讲题"三步学习法,通过独特的思维训练让学员轻松提分。
做网络课程 我们是认真的
其他机构
-
经验少、不资深
-
课时太多看不完或太少知识点不全
-
无特别服务
-
无教材或教材不全
新东方在线考研
-
新东方明星师资阵容,全速助攻
-
直录博课程结合,自主选择学校时间
-
作文批改,知识堂答疑,考前诊断等等
-
全套精编密训资料,电子讲义
选择新东方在线的8个理由
-
专业名师
精选名师授课
授课经验丰富
-
教研团队
数百人教研团队
精细模块化分工
-
授课方法
直播、录播结合
学习效果事半功倍
-
培训经验
十数年辅导经验
提高复习效果
-
高清视频
涵盖考试重点难点
支持打包下载
-
上市机构
纽交所上市公司
全国数千家代理
-
正规公司
公司备案资质完整
安全可靠有保障
-
百强品牌
连获多项大奖
受到广泛认可
学习资料
【考研辅导网课】一、矩阵的特征值与特征向量问题
1.矩阵的特征值与特征向量的概念理解以及计算问题
这一部分要求会求给定矩阵的特征值与特征向量,常考的题型有数值型矩阵的特征值与特征向量的计算和抽象型矩阵的特征值与特征向量的计算。若给定的矩阵是数值型的矩阵,则一般的方法是通过求矩阵特征方程的根得到该矩阵的特征值,然后再通过求解齐次线性方程组的非零解得到对应特征值的特征向量。若给定的矩阵是抽象型的,则在求特征值与特征向量的时候常用的方法是通过定义,但此时需要考虑的是特征值与特征向量的性质以及应用。
2.矩阵(方阵)的相似对角化问题
这里要求掌握一般矩阵相似对角化的条件,会判断给定的矩阵是否可以相似对角化,另外还要会求矩阵相似对角化的计算问题,会求可逆阵以及对角阵。尤其需要掌握的是通过相似的结论,反推一些参数,比如相似可以得到:秩、行列式、特征值、迹等相等,解题中往往是通过这些量先得到一些参数。事实上,矩阵相似对角化之后还有一些应用,主要体现在矩阵行列式的计算或者求矩阵的方幂上,这些应用在历年真题中都有不同的体现。
3.实对称矩阵的正交相似对角化问题
其实质还是矩阵的相似对角化问题,与2不同的是求得的可逆阵为正交阵。这里要求考生除了掌握实对称矩阵的正交相似对角化外,还要掌握实对称矩阵的特征值与特征向量的性质,在考试的时候会经常用到这些考点的。这块的知识比较灵活,可直接,即给定一个实对称矩阵A,让求正交阵使得该矩阵正交相似于对角阵;也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A;另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值的特征向量确定出对应的特征向量,从而确定出矩阵A.最重要的是,掌握了实对称矩阵的正交相似对角化就相当于解决了实二次型的标准化问题。