当前位置: 网校> 高二辅导培训> 高二网课数学哪里有
简单网校 高二辅导培训

高二网课数学哪里有

发布时间:2020年02月14日

高二网校介绍

高二网校哪个好?相信同学们都想找到比较好的高二网校,小编根据同学评价口碑、师资、课程、服务、售后等等推荐一家高中网校:简单学习网。简单学习网2007年就成立了,是国内学生口碑很高的高中网校,课程主要开设高中各年级4个难度层次、26个教材版本的课程,全国的注册学生累计2800万。建议同学们先试听课程,亲身体验一下。免费领取全科精品课>>

高二网课免费试听

高二英语辅导同步课

主讲老师:张志强、麻雪玲等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二数学辅导同步课

主讲老师:黄颖 、王老师、王晨等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二物理辅导同步课

主讲老师:张国、 徐建烽等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二化学辅导同步课

主讲老师:小叶老师、焦老师、熊美容等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二网校四步个性化听课法

  • 优秀师
    资授课
    优秀师资授课老师传授典型题详细办法,教学生举一反三、一题多解、一题巧解。
  • 选择
    错题本
    选择错题本听课中的错题能自动加入错题本,课后可方便复习及导出错题本。
  • 网络
    答疑
    网络答疑在听课及课后练习中有不懂之处随时提问,在线为你答疑解惑。
  • 课后
    练习
    课后练习老师针对课堂中的经典例题,为学生推送同类型题,帮助彻底掌握解题方法。

高二老师详情

王大绩

业内泰斗紧扣考纲突出重点立即试听
全国著名语文特级教师,北京市教育学会语文教学研究会常务理事。 《长期从事高二教学、教研工作,10多年来一直参加北京市高考阅卷,并在阅卷领导小组负责《阅卷纵横》的编纂;悉心研究教学与高考规律,洞察各地高考试题走向,致力于通过全面贯彻语文备考的"自觉意识",提高考生的备考效率和综合素质。 在现代文阅读、语言表达、作文创造性思维的考试规律和训练手段,以及《语文课程标准》的理论和实践等方面有独到建树。

李俊和

讲课思路清晰紧扣考纲深受学员好评立即试听
北京四中英语特级教师。北京四中英语学科组组长,北京市级骨干教师,西城高二英语兼职教研员。 一线任教近30年,担任英语教研组长十余年。电视台教育频道高考备考节目主讲人..

傲德

通俗易懂功底深厚热情饱满立即试听
毕业于北京大学,简单学习网数学明星教师。 一个怀揣理想主义的现实主义者。以理想主义给学生带来激情和乐趣,用现实主义教学生应试备考。有兴趣,能应试,学得好,考得好。 原为北京大学文艺爱好者。艺而兼文,青而无愤:演的了话剧,求的出斜率;打的动非洲手鼓,算的...

高二网校优势

优秀师资
汇聚全北京乃至全国优秀师资。
学习方便
在家在线随时听;下载MP3带到学校听,打印讲义课前练,有问题答疑平台在线答疑。移动课程还能随时把课堂带身边。
个性化
"4+1"互动教学法:从听课、当堂练习、不懂就问,到错题本追踪复习等每一步都充分满足每个学生个体需求。
价格更低
可全科购买,也可单科购买,价格低;高中各年级包括高一高二高考的免费试听,正式课可免费试听,零风险。

    网校课程服务


  • 互动封闭仿真课堂

    1、智能交互 2、电子板书式视频教学 3、在线互动问答 4、封闭课堂
  • 启发式教学方式

    随堂测试、知识梳理、易错点揭示、总结启迪
  • 智能错题本

    听课中的错题能自动加入错题本,课后可方便复习及导出错题本
  • 升级服务

    在线答疑、课后同类题练习、讲义下载、短信提醒

学习资料

1、配方法 。所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是初中数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2 bx c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。