当前位置: 网校> 高二辅导培训> 高二学习辅导
简单网校 高二辅导培训

高二学习辅导

发布时间:2019年04月23日

高二网校介绍

高二网校哪个好?相信同学们都想找到比较好的高二网校,小编根据同学评价口碑、师资、课程、服务、售后等等推荐一家高中网校:简单学习网。简单学习网2007年就成立了,是国内学生口碑很高的高中网校,课程主要开设高中各年级4个难度层次、26个教材版本的课程,全国的注册学生累计2800万。建议同学们先试听课程,亲身体验一下。免费领取全科精品课>>

高二网课免费试听

高二英语辅导同步课

主讲老师:张志强、麻雪玲等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二数学辅导同步课

主讲老师:黄颖 、王老师、王晨等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二物理辅导同步课

主讲老师:张国、 徐建烽等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二化学辅导同步课

主讲老师:小叶老师、焦老师、熊美容等

特色服务:互动封闭仿真课堂启发式教学方式智能错题本在线答疑

免费试听

高二网校四步个性化听课法

  • 优秀师
    资授课
    优秀师资授课老师传授典型题详细办法,教学生举一反三、一题多解、一题巧解。
  • 选择
    错题本
    选择错题本听课中的错题能自动加入错题本,课后可方便复习及导出错题本。
  • 网络
    答疑
    网络答疑在听课及课后练习中有不懂之处随时提问,在线为你答疑解惑。
  • 课后
    练习
    课后练习老师针对课堂中的经典例题,为学生推送同类型题,帮助彻底掌握解题方法。

高二老师详情

王大绩

业内泰斗紧扣考纲突出重点立即试听
全国著名语文特级教师,北京市教育学会语文教学研究会常务理事。 《长期从事高二教学、教研工作,10多年来一直参加北京市高考阅卷,并在阅卷领导小组负责《阅卷纵横》的编纂;悉心研究教学与高考规律,洞察各地高考试题走向,致力于通过全面贯彻语文备考的"自觉意识",提高考生的备考效率和综合素质。 在现代文阅读、语言表达、作文创造性思维的考试规律和训练手段,以及《语文课程标准》的理论和实践等方面有独到建树。

李俊和

讲课思路清晰紧扣考纲深受学员好评立即试听
北京四中英语特级教师。北京四中英语学科组组长,北京市级骨干教师,西城高二英语兼职教研员。 一线任教近30年,担任英语教研组长十余年。电视台教育频道高考备考节目主讲人..

傲德

通俗易懂功底深厚热情饱满立即试听
毕业于北京大学,简单学习网数学明星教师。 一个怀揣理想主义的现实主义者。以理想主义给学生带来激情和乐趣,用现实主义教学生应试备考。有兴趣,能应试,学得好,考得好。 原为北京大学文艺爱好者。艺而兼文,青而无愤:演的了话剧,求的出斜率;打的动非洲手鼓,算的...

高二网校优势

优秀师资
汇聚全北京乃至全国优秀师资。
学习方便
在家在线随时听;下载MP3带到学校听,打印讲义课前练,有问题答疑平台在线答疑。移动课程还能随时把课堂带身边。
个性化
"4+1"互动教学法:从听课、当堂练习、不懂就问,到错题本追踪复习等每一步都充分满足每个学生个体需求。
价格更低
可全科购买,也可单科购买,价格低;高中各年级包括高一高二高考的免费试听,正式课可免费试听,零风险。

    网校课程服务


  • 互动封闭仿真课堂

    1、智能交互 2、电子板书式视频教学 3、在线互动问答 4、封闭课堂
  • 启发式教学方式

    随堂测试、知识梳理、易错点揭示、总结启迪
  • 智能错题本

    听课中的错题能自动加入错题本,课后可方便复习及导出错题本
  • 升级服务

    在线答疑、课后同类题练习、讲义下载、短信提醒

学习资料

1.把握好集合的概念、性质  集合知识是由初中向高中知识过渡的第一座桥梁。  首先,集合的表法使初中所学的自然数集、有理数集、实数集等有关的知识的表示更为简炼,从而简化了后面复杂问题的表述;其次,集合间的关系运算可以更好地帮助我们理解新学的知识,例如对不等式的解或方程组的解的理解;第三,集合作为一种数学思想渗透于今后所要学习的许多知识中。因此在高中伊始学好有关集合的知识是十分重要的。  2.加强联想与类比  高中知识与初中知识之间的联系是十分密切的。高中的很多知识可以通过降维、降幂等形式转化为初中的有关知识,但这需要我们能将它们加以类比、联想。  以几何为例,初中平面几何中我们有过证明正三角形内任意一点到三边的距离和等于三角形的高,通过面积和相等很容易证明。  类比高中立体几何,我们能否证明一个正面体内任意一点到四个面的距离和等于该四面体的高呢?  其实同学们能够看出这个问题与上面平面几何的问题是十分类似的。这里是将二维的问题推广到三维。二维的问题可以用面积解决,三维的问题我们能用什么办法呢?也许用求体积的方法?有兴趣的同学可以试一试。  当然,联想、类比是以对知识的理解与掌握为前提的。