发布时间: 2016年03月17日
函数、极限、连续 |
一元函数微分学 |
一元函数积分学 |
多元函数微分学 |
多元函数积分学 |
无穷级数 |
常微分方程 |
更多精彩内容>>>> |
高等数学在150分的考研数学一和数学三中占了56%,即82分,而高等数学二在150分的考研数学二中占了78%,即116分,从而可以看出高数对考研数学来说是最重要的一科,所以我们经常这样说“得高数者,得天下”!下面考研数学名师就结合考研数学大纲为大家详细介绍高数中多元函数微分学的考试要求:
>>>>考试要求<<<<
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
4.理解方向导数与梯度的概念,并掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数的求法.
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.
那么如何才能掌握多元函数微分学的考试要求中的各个知识点呢?下面考研辅导名师帮助考生做出复习建议。
●建议一:从根本上理解概念定理
高数中有很多概念,需要考生理解记忆。而概念本身是反映事物的本质,考生只有弄清楚它是如何定义的,有什么性质,才能从根本上理解一个概念。所有需要背诵记忆的东西只有建立在理解的基础上才会变得更加容易。定理是一个正确的命题,它分为条件和结论两个部分组成。对于定理的记忆除了要掌握它的条件和结论,还要搞清楚它所适用的范围,更好的理解运用。
●建议二:从熟练上掌握题型特点
在复习中很多考生都过多的重视题海策略,往往忽视了最根本的例题。课本上的例题都是很经典的,有助于考生理解概念和掌握定理。通过反复掌握例题来了解不同例题的特点和解法,在理解例题的同时适量的练习习题。在做题时要善于总结,把做错的题型总结起来,在后面的复习中加深印象。通过熟练的掌握例题以及总结类型,这样在往后遇到的题目中才能做到举一反三。
●建议三:从宏观上理清知识脉络
考生要对整个高数知识有个整体的把握,构建一个系统的知识体系,这样把所有知识串联在一起,方便记忆,以及加深对知识的理解,这为今后的复习起到事半功倍的效果。
考研数学历年来出的题目往往不是那些高难度的题型,大多是考查考生基础知识。所以考生只有脚踏实地,把基础知识掌握牢固才能赢得考研数学。
热门推荐:
下一篇: 含泪推荐:这样通过雅思考试 - 雅思经验